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Scattering fidelity in elastodynamics
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The recent introduction of the concept of scattering fidelity causes us to revisit the experiment by Lobkis and
Weaver [Phys. Rev. Lett. 90, 254302 (2003)]. There, the “distortion” of the coda of an acoustic signal is
measured under temperature changes. This quantity is, in fact, the negative logarithm of scattering fidelity. We
reanalyze their experimental data for two samples, and we find good agreement with random matrix predictions
for the standard fidelity. Usually, one may expect such an agreement for chaotic systems, only. While the first
sample may indeed be assumed chaotic, for the second sample, a perfect cuboid, such an agreement is
surprising. For the first sample, the random matrix analysis yields perturbation strengths compatible with
semiclassical predictions. For the cuboid, the measured perturbation strengths are by a common factor of % too
large. Apart from that, the experimental curves for the distortion are well reproduced.

DOLI: 10.1103/PhysRevE.73.015202

Lobkis and Weaver (henceforth LW) have measured the
sensitivity of elastic coda waves to temperature changes [1].
For this purpose they used the cross-correlation function be-
tween these waves at different temperatures. The use of coda
waves, i.e., of the response after some initial transient, is
essential in getting rid of system specific short time effects
and to see generic features. After correcting for a trivial term
due to a change of volume and wave speeds they quantify the
remaining changes as “distortion,” and study its behavior as
a function of time. We shall show that this quantity is the
negative logarithm of the “scattering fidelity” introduced and
measured in [2,3]. The change in temperature provides the
“perturbation” of the dynamics characteristic of all experi-
ments in echo dynamics. For sufficiently chaotic dynamics in
systems weakly coupled to decay channels, the scattering
fidelity in turn approaches the standard fidelity amplitude.
Fidelity, the absolute value squared of the fidelity amplitude,
has received a great deal of attention in recent years, as it is
used as a benchmark in quantum information processes [4],
and in the context of quantum chaos (for a partial overview
and pertinent references, see [5]).

A random matrix description of fidelity decay [6] has ex-
plained comparable experiments with chaotic microwave
cavities [2,3] quite well. Random matrix theory (RMT)
makes a definite statement on the form of the fidelity ampli-
tude as a function of time. It yields a unified description of
the “perturbative” and the “Fermi golden rule” [7-9] regime.
We expect this analysis to provide a more appropriate inter-
pretation of the experiments than the original treatment in
[1]. RMT still contains the perturbation strength as a free
parameter, which must be determined independently. For
quantum chaotic systems, different semiclassical methods
can be used for that purpose [2,9,10]. In the present case, we
may still use the result of Ref. [1].
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We analyzed the data for two three-dimensional samples,
measured by LW. The first object is the so-called “medium
block” (after extra cut) which is supposed to have domi-
nantly chaotic dynamics, with no symmetries left. The sec-
ond object is a cuboid, called “rectangle,” where the dynam-
ics is not chaotic, but due to mode conversion it is also not
integrable and actually known to display random matrix be-
havior as far as spectral statistics are concerned [11]. In both
cases, we obtained very good agreement between experiment
and the RMT prediction, if we fit the strength of perturba-
tion. For the first sample, the fitted strength is in reasonable
agreement with the theoretical result of LW. For the second
sample, we obtain values that are larger by a common factor
of %, approximately.

The second case is particularly important as the behavior
of such systems is not well understood. Both the general
agreement of the shape of the fidelity decay with the RMT
prediction as well as the failure of the semiclassical estimate
for the perturbation strength are lacking a theoretical expla-
nation. The concepts of fidelity and scattering fidelity to-
gether with the RMT approach set an appropriate frame,
where these questions can be discussed.

Scattering fidelity. The scattering fidelity [2] is defined as

Far®) = S SN S OPXSL 0. (1)

Here, <§ab(t)*.§‘ ',(1)) is the Fourier transform of the cross-
correlation function of a scattering matrix element for the
unperturbed and perturbed system, respectively. Similarly,
(8.,(0)]» and (|§;b(t)|2) are the Fourier transforms of the
corresponding autocorrelation functions, used for proper nor-
malization. It can be shown that appropriate averaging (de-
noted by (:--)) yields the standard fidelity amplitude f(z) for

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.73.015202

GORIN, SELIGMAN, AND WEAVER

chaotic systems weakly coupled to the scattering channels
[2]. Using the linear response result wrapped in an expone-
tial [6], we obtain

—1nf(z)=>\§lf+x2—f~ dx'fx dx”bz(x”)} )
2 0 0

Here, \o/(27) is the average size of an off-diagonal element
of the perturbation in units of the mean level spacing in the
unperturbed system. The variable x measures time in units of
the Heisenberg time, x=1/1y, and b,(x) is the two point form
factor describing the spectral correlations of the unperturbed
Hamiltonian, which is taken from the Gaussian orthogonal
ensemble. The approximate result is dominated for short
times <ty by the linear term, and for long times >ty by
the quadratic term. There, the double integral just compen-
sates the linear term up to a remainder, logarithmic in x. For
the fidelity amplitude in turn, this means that for large A\,
<1 the decay is nearly exponential (Fermi golden rule re-
gime), while for small Ay<<1 it is nearly Gaussian (perturba-
tive regime) [6-9]. Note that this distinction is irrelevant for
the distortion, where the perturbation strength appears as a
common prefactor.

In a microwave experiment excellent agreement between
San(2) and f(r), as given by Eq. (2), has been found [2,3]. For
closed chaotic systems the validity of this approximation has
been demonstrated numerically in various expamples such as
the kicked rotor [12].

In Ref. [1] the authors measure the acoustic response to a
short piezoelectric pulse as a function of time. They consider
the normalized cross correlation between two such signals
obtained at the temperatures 7 and 75:

fdt STl(t)STz(t(l +¢g))

\/ f di S, (1) f di S7.(1(1 + #))

This expression displays a structure similar to Eq. (1). The
time averaging over a small window, performed in Eq. (3),
corresponds to a smoothing of the correlation functions in
Eq. (1). The selection of &, such that the correlation function
X(e)=X.x becomes maximal, eliminates the trivial effects
due to dilation and change of wavespeed, caused by the tem-
perature change. This is equivalent to the spectral unfolding
performed in Refs. [2,3] to eliminate the volume effect of a
moving wall. The distortion is defined as D(r)=—In(X,,,y),
where the time dependence is given by the “age” of the sig-
nal, i.e., the center of the small time interval over which the
correlation function X(g) was evaluated. If formulated as a
scattering process, we find

D(t) == ln[.faa(t)] == lnf(t)’ (4)

where the scattering channel a is defined by the transducer,
that transmits excitation to and from the sample. Thus, for
sufficiently chaotic samples in the elastodynamic scattering
experiments, we expect the scattering fidelity to be equal to
the fidelity amplitude, and the latter to be well described by
the RMT result, Eq. (2).

X(e) = 3)
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FIG. 1. The distortions for the medium block as plotted in Fig.
4 of Ref. [1]. The thin jagged lines correspond to measurements in
the frequency ranges 300, 600, 700, and 800 kHz (from bottom to
top). The thick lines show the corresponding theoretical curves ac-
cording to the Egs. (2) and (4), using the values of A given in Table
I (full RMT fit).

LW describe the behavior of D(z) with the help of a ray
picture of the resonating acoustic waves, the assumption of
random reflection angles along the ray paths, and an estimate
for the mode conversion rates between dilational and shear
waves. Similar to the Fermi golden rule regime, they obtain
a linear time dependence:

D(t) = N3t/(2ty), Ny = w2ty CAPVIS, (5)
where C=3.26x1071%/(K? cm msec™!) denotes the distor-
tion coefficient (see Ref. [1]), A denotes the temperature dif-
ference T,—T, in Kelvin, while V and S denote the volume
and the surface of the sample. Since the RMT result has the
same behavior at asymptotically small times, we may set
No=A\, to obtain a parameter-free theory for distortion, valid

also at large times. From Refs. [13,14], we obtain the follow-
ing expression for the Heisenberg time #:

4
tH:—gTV(2q3+1)V2+2—WzS(3q+ )V. (6)
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Here, ¢,=637 cm/msec and ¢;=c,/q=316 cm/msec are the
longitudinal and the transverse (shear) wave velocities. The
frequency (range) is denoted by ».

Medium block. For that sample, V=906 cm® and S
=636 cm?, and the temperature difference was A=4 K. The
distortion, measured as a function of time is shown in Fig. 1.
With the Heisenberg times given in Eq. (6), we have fit the
perturbation strength Ay and the results are given as “full
RMT fit” in Table I. For experimental reasons, the data for
D(1) are reliable for > 20 msec. The fits have been restricted
correspondingly.

The agreement between the measured distortions or scat-
tering fidelities and RMT is within the statistical error of the
data. In most cases deviations from linear behavior are not
noticable to the eye, except for the 300 kHz data, where t
~78.4 msec [15] lies within the time range of the figure.
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TABLE I. Medium block: Table of linear fit and full RMT fit
values for the dimensionless perturbation strength A\, and the re-
spective Heisenberg times for the four frequency ranges.

v(kHz) No (Lin. fit) (Full fit) ty(msec)
300 0.471 0.298 78.4
600 1.584 1.381 294.6
700 2.136 1.929 397.3
800 2.709 2.505 515.3
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However, the influence of the quadratic term on the fit values
for N\ is large. In Table I, they are contrasted to those ob-
tained by a linear fit in the spirit of LW.

In Fig. 2, the perturbation strengths \( obtained from the
linear fit (diamonds) and the full fit (circles) are compared to
the estimate from Eq. (5). The difference between both fitting
methods is clearly noticeable. The full RMT analysis yields
values for A quite close to the semiclassical prediction of
LW. We have no explanation for the remaining deviations. It
is not clear, whether these are statistically acceptable,
whether chaoticity is not perfect, or whether there is some
other reason. We may recall that in Ref. [2], the experimental
perturbation strength did also differ from the theoretical es-
timate, as it was not performed sufficiently far in the semi-
classical regime.

Rectangle. In Figs. 3 and 4, we analyze data for the rect-
angle, a perfect cuboid, in a similar way as above. Clearly, a
scalar wave equation would lead to integrable ray dynamics,
where our RMT model must fail. However, in the present
case, the wave field has two components (dilatational and
shear waves), which are coupled due to mode conversion.
The corresponding classical dynamics is marginally stable,
but may still be ergodic. Recently, the spectral statistics of
such an elastodynamic system has been studied thoroughly
[11]. Apart from certain symmetries, the statistical measures
accurately show RMT behavior.

From a theoretical point of view, it remains an open ques-
tion, whether scattering fidelity still agrees with standard fi-
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FIG. 2. Medium block: The perturbation strength as a function
of the frequency range. The circles show the values for A obtained
from a fit with Eq. (2), while the diamonds show the corresponding
values when only the linear term of Eq. (2) is taken into account.
The solid line gives the perturbation strength as obtained from Eq.

(5).
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FIG. 3. The distortion as a function of time, for the rectangle.
The thin jagged lines correspond to measurements in the frequency
ranges from 100 to 800 kHz, in steps of 100 kHz (from bottom to
top). The thick smooth lines show the best theoretical fits, according
to Egs. (2) and (4), with A given in Table II (full RMT fit).

delity, and whether the behavior of the fidelity amplitude can
be described by RMT. The following analysis with Eq. (2)
will shed some light on these questions.

For the rectangle, we have data for eight frequency win-
dows at v=100 kHz, 200 kHz,..., 800 kHz. The correspond-
ing Heisenberg times range from 10 to 500 msec (see Table
II). In Fig. 3, one can see a transition from a linear to a
quadratic decay characteristic of the RMT expression, Eq.
(2). Here, it is really surprising that the RMT expression
describes the data so well. The perturbation strengths ob-
tained from fits to Eq. (2) are plotted in Fig. 4 (circles).
Except for a constant factor of %, approximately, the result
follows the theoretical expectation [Eq. (5), solid line]. This
is demonstrated by a fit for the distortion coefficient on the
basis of Eq. (5), which yields C=8.90x10"1"/
(K2 cm msec™') (dashed line). Considering that the argument
in LW leading to Eq. (5) is based on fast chaotic ray mixing
this difference is less surprising, than the agreement in scal-
ing.
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FIG. 4. Rectangle: The perturbation strength as a function of the
frequency range. The circles show the values for \( as obtained
from Eq. (2), and from the same expression, taking into account
only the linear term (diamonds). The solid line gives the perturba-
tion strength as given by Eq. (5). The dashed line shows the same
expression, but with the distortion coefficient fitted to the data
points (circles; see text).
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TABLE II. Rectangle: Table of linear and full RMT fit values
for the dimensionless perturbation strength A\, together with the
respective Heisenberg times.

v (kHz) No (Lin. fit) (Full fit) ty (msec)
100 0.241 0.061 10.36
200 0.607 0.279 35.75
300 0.903 0.567 76.19
400 1.389 1.033 131.68
500 1.905 1.561 202.21
600 2.564 2.227 287.78
700 3.282 2.957 388.39
800 3.969 3.662 504.04

In this paper, we identified a previously published elasto-
mechanic scattering experiment as an experiment that mea-
sures scattering fidelity in a setting usually called echody-
namics. As in the case of electromagnetic billiards, it turns
out that a simple random matrix model describes the decay
of the scattering fidelity very well, despite the fact that these
are much more complicated systems. The RMT model leads
to an additional quadratic term, which is the most important
difference to the model used in [1]. For the first sample with
suposedly chaotic ray dynamics, it leads to a better (though
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not perfect) parameter-free description of the measured dis-
tortion.

For the rectangle, the RMT description is still valid,
though the perturbation strengths are larger than predicted by
LW’s analysis. The applicability of the RMT approach shows
that at least in one important aspect not only energies but
also wave functions behave like those of a chaotic system. In
this sense, our results complement those of [11]. Further
studies of this situation will be of great interest.

The high quality factors of elastomechanic experiments,
as well as the possibility to measure explicitly in the time
domain, make these experiments particularly welcome.
Among possible experiments, we believe that it will be
worthwhile to analyze strong perturbation data, e.g., larger
temperature differences. Such experiments are more difficult,
due to precision problems, but may serve to explore the lim-
its of RMT, or detect other regimes of fidelity decay. This is
particularly interesting, because the exact solution of the
RMT model is now available [16], and it shows a small local
maximum of fidelity at the Heisenberg time.
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